Year 13 **Mathematics** EAS 3.6

Robert Lakeland & Carl Nugent

Contents

WULAKE Ltd
Innovative Publisher of Mathematics Texts

Differentiation 3.6

This achievement standard involves applying differentiation methods in solving problems.

- This achievement standard is derived from Level 8 of The New Zealand Curriculum and is related to the achievement objectives
	- ❖ Identify discontinuities and limits of functions.
	- ❖ Choose and apply a variety of differentiation techniques to functions and relations using analytical methods.
- Apply differentiation methods in solving problems involves:
	- ◆ selecting and using methods
	- ❖ demonstrating knowledge of concepts and terms
	- ◆ communicating using representations.
- Relational thinking involves one or more of:
	- ❖ selecting and carrying out a logical sequence of steps
	- ❖ connecting different concepts or representations
	- ❖ demonstrating understanding of concepts
	- forming and using a model;

 and also relating findings to a context, or communicating thinking using appropriate mathematical statements.

- Extended abstract thinking involves one or more of:
	- ❖ devising a strategy to investigate or solve a problem
	- ❖ identifying relevant concepts in context
	- ❖ developing a chain of logical reasoning, or proof
	- ❖ forming a generalisation;

 and also using correct mathematical statements, or communicating mathematical insight.

- Problems are situations that provide opportunities to apply knowledge or understanding of mathematical concepts and methods. Situations will be set in real-life or mathematical contexts.
- Methods include a selection from those related to:
	- ❖ derivatives of power, exponential, and logarithmic (base e only) functions
	- ❖ derivatives of trigonometric (including reciprocal) functions
	- ❖ optimisation
	- ❖ equations of normals
	- ❖ maxima and minima and points of inflection
	- ❖ related rates of change
	- ❖ derivatives of parametric functions
	- ❖ chain, product, and quotient rules
	- ❖ equations of normals
	- ❖ properties of graphs (limits, differentiability, continuity, concavity).

 $f(x)$

 $f(x)$

5

 -4 -3 -2 -1 1 2 3 4

 -4 3 – -2 -1

Example 5

Example 4

Therefore $\lim_{x\to 2} f(x) = 4,$ because the left $limit =$ the right

As $x \rightarrow 2$ from the left, $f(x) \rightarrow 4$ and as $x \rightarrow 2$ from the right, $f(x) \rightarrow 4$.

A limit exists if when approached from the left or the right hand side the limit is finite and the same.

If $f(x)$ gets closer and closer to a specific value L as x approaches a chosen value 'a' from the right, then we say that the limit of $f(x)$ as x approaches 'a' from the right is L.

If $f(x)$ gets closer and closer to a specific value L as x approaches a chosen value 'a' from the left, then we say that the limit of $f(x)$ as x approaches 'a' from the left is L.

If the limit of $f(x)$ as x approaches 'a' is the same from both the right and the left, then we say that the limit of $f(x)$ as x approaches 'a' is L.

limit. Also $f(2) = 4$. As $x \rightarrow -2$ from the left, $f(x)$ gets smaller and smaller (\sim) and as $x \rightarrow -2$ from the right, $f(x)$ gets larger and larger

Therefore $\lim_{x\to -2} f(x)$ does not exist because (∞) and (+∞) are not finite limits and the left limit ≠ the right

 $f(x) \rightarrow 0$ and as $x \rightarrow -\infty$ $f(x) \rightarrow 0$.

 $\lim_{x \to -\infty} f(x) = 0$ and

Differentiation of Products of Two or More Functions

Differentiating Products

In this section we are concerned with differentiating the product of two functions, i.e. one function multiplied by the other such as $f(x) = (2x + 3)(x - 4)$.

In some instances we could multiply out the two functions first and then differentiate the result, but in most situations this is not a practical option.

The Product Rule

For any function which is expressed as a product of two functions

 $h(x) = f(x)g(x)$

then

$$
h'(x) = f'(x)g(x) + f(x)g'(x)
$$

The product rule using different notation is:

$$
y = uv
$$

\n
$$
y' = u'v + uv'
$$

\nor
$$
\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}
$$

multiplying these derivatives, will NOT produce the correct answer.

At Achievement and Merit level you only need to be able to use this formula. For Excellence you may be

Proof of the Differentiation of Products
\nIf
$$
k(x) = f(x)g(x)
$$
 then $k'(x) = \lim_{h\to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$
\nNote: $f'(x) = \frac{f(x+h) - f(x)}{h}$, and therefore $f(x+h) = hf'(x) + f(x)$ by cross-multiplying
\n $g'(x) = \frac{g(x+h) - g(x)}{h}$, and therefore $g(x+h) = hg'(x) + g(x)$ by cross-multiplying
\n $k'(x) = \lim_{h\to 0} \frac{(hf'(x) + f(x))(hg'(x) + g(x)) - f(x)g(x)}{h}$
\n $k'(x) = \lim_{h\to 0} \frac{hf'(x)g'(x) + hf'(x)g(x) + hf(x)g'(x) + f(x)g(x) - f(x)g(x)}{h}$
\n $k'(x) = \lim_{h\to 0} \frac{hf'(x)g'(x) + f'(x)g(x) + f(x)g'(x)}{h}$
\n $k'(x) = \lim_{h\to 0} \frac{hf(x)g'(x) + f'(x)g(x) + f(x)g'(x)}{h}$
\n $k'(x) = \lim_{h\to 0} hf'(x)g'(x) + f'(x)g(x) + f(x)g'(x)$
\n $k'(x) = f'(x)g(x) + f(x)g'(x)$
\nTherefore if $k(x) = f(x)g(x)$ then $k'(x) = f'(x)g(x) + f(x)g'(x)$
\nUsing different notations for $y = uv$, where u and v are both functions of x then
\n $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$

EAS 3.6 – Differentiation 47

Example

Find the equation of the normal to the curve $y = x^3 - 3x^2 + 4x + 1$ at the point (2, 5).

$$
\underbrace{\bigcirc \bigcirc \text{trig}_\mathcal{D}}^{\text{trig}_\mathcal{D}}
$$

We begin by calculating the gradient of the curve by differentiating and setting $x = 2$.

$$
\frac{dy}{dx} = 3x^2 - 6x + 4
$$

$$
\frac{dy}{dx} = 4
$$

Gradient of the normal is the negative reciprocal of

4, which is $\frac{-1}{4}$

At $x = 2$

4
The normal is
$$
y - 5 = \frac{-1}{4}(x - 2)
$$

which simplifies to $x + 4y - 22 = 0$

Achievement – Answer the following questions.

244. Find the coordinates of the point on the curve $y = x^2 - \ln x$ where the gradient is 1. relations of the point on the 245. Find the x values of the points on the curve - In x where the gradient is 1.
 $y = \frac{3}{x} + \frac{x}{3}$ where the gradient equals -1. - In x where the gradient is 1.
 $y = \frac{3}{x} + \frac{x}{3}$ where the gradient equals -1.

246. Find the gradient of the normal to the curve

 $y = \frac{1}{(x+1)}$, where $x = -3$.

247. Find the equation of the normal to the curve $y = x^2 - 4x$ at $x = -1$.

 $+\frac{x}{3}$ where the gradient equals ⁻¹.

- 248. Find the equation of the tangent to the curve $y = 3.68 \text{ e}^{0.5x}$ at (2, 10).
- **249.** Find the equation of the normal to the curve $y = 3.68 \text{ e}^{0.5x} \text{ at } x = 1.$

We begin by calculating the gradient of the curve by differentiating and setting $x = 2$.

= 2. by differentiating and setting x = 2.
\n+ 4
\n
$$
\frac{dy}{dx} = \frac{k}{kx-1} - 2x
$$
\n
$$
At x = 2, \qquad \frac{k}{2k-1} - 4 = 1
$$
\n
$$
Solving for k, \qquad \frac{k}{2k-1} = 5
$$
\n
$$
10k - 5 = k
$$
\n
$$
9k = 5
$$
\n
$$
k = \frac{5}{9} (0.5556)
$$
\n
$$
x = 2, \qquad \frac{k}{2k-1} - 4 = 1
$$
\n
$$
10k - 5 = k
$$
\n
$$
9k = 5
$$
\n
$$
k = \frac{5}{9} (0.5556)
$$
\n
$$
x = \frac{3}{7} + \frac{x}{3} \text{ where the gradient is 1.}
$$

245. Find the x values of the points on the curve

 $y = \frac{3}{x}$

If $y = ln(kx - 1) - x^2$, and the gradient of the tangent to the curve at $x = 2$ is 1, find the value of k.

Example

Stationary points, turning points and maximum and minimum points, increasing and decreasing.

A stationary point gets its name from the curve being momentarily stationary (not increasing or decreasing). Momentarily the gradient is zero.

The maximum and minimum points are called turning points because at these points the curve turns around and heads the other way. All turning points are stationary points.

Points of inflection are where the concavity of a curve changes. They can be stationary points but not necessarily. Points of inflection are never turning points.

To identify whether a function is increasing or decreasing we can use the derivative.

If f'(x) > 0 at each point in an interval, then the function is said to be increasing on that interval.

Similarly if f'(x) < 0 at each point in an interval then the function is said to be decreasing on that interval.

Example

Find the coordinates of all the stationary points (maximum and minimum) of the function

 $f(x) = x^3 + x^2 - x + 1$

and state their nature (what type they are).

Identify when the function $f(x)$ is decreasing and increasing.

To find the stationary points we begin by calculating the derivative

 $1 \t f(1) = 2$ y coordinate

$$
f(x) = x3 + x2 - x + 1
$$

$$
f'(x) = 3x2 + 2x - 1
$$

Setting $f'(x) = 0$

to identify the points which have a gradient of 0.

$$
3x^2 + 2x - 1 = 0
$$

$$
(3x-1)(x+1) = 0
$$
 factorising

gives
$$
x = -1
$$
 or $x = \frac{1}{2}$

$$
\frac{1}{3}
$$

when $x = \frac{1}{3}$ $f\left(\frac{1}{3}\right)$ $\sqrt{ }$ $\left(\frac{1}{3}\right)=\frac{22}{27}$

when $x = -1$

y coordinate

Stationary coordinates are (-1, 2) and $\left(\frac{1}{3}, \frac{22}{27}\right)$ 27 $\sqrt{ }$ $\left(\frac{1}{3}, \frac{22}{27}\right)$.

To identify the nature of the stationary points we could use our knowledge of the shape of a positive cubic. $(3x-1)(x + 1) = ($
gives $x =$ ⁻
when $x =$ ⁻¹
date called
ts the curve
y. All
when $x = \frac{1}{3}$ $f(\frac{1}{3}) = \frac{1}{3}$
Stationary coordinates a
To identify the nature of
could use our knowled₈
cubic.

$$
\bigwedge
$$

Therefore the first x value $(x = -1)$ is going to be the

maximum and the second value $(x = \frac{1}{3})$ will be the minimum.

Alternatively we could calculate the gradient before, between and after the turning points. We only need the sign of the derivative or gradient function. For a value before – 1 we have used – 2, for between the – 1 Therefore the first x value ($x = -1$) is going to be the
 ultrareform the second value ($x = \frac{1}{3}$) will be the

minimum.

Alternatively we could calculate the gradient before,

between and after the turning points. We the state of inflection are never maximum and the second value $(x = \frac{1}{3})$ will be the minimum.

of lection
 $\begin{array}{c}\n\text{Alternatively we could calculate the gradient before, between and after the turning points. We only need the sign of the derivative or gradient function. For a value before -1 we have used -2, for between the -1.\n\end{array}$

and $\frac{1}{2}$ 3 we have used 0 and for after $\frac{1}{2}$ 3 we have used

2. We substitute these values into $f'(x) = 3x^2 + 2x - 1$.

so the maximum point $($ $)$ is $($ -1, 2 $)$ and the

minimum point
$$
(\bigcup)
$$
 is $\left(\frac{1}{3}, \frac{22}{27}\right)$.

The function $f(x) = x^3 + x^2 - x + 1$ is decreasing in the interval $-1 < x < \frac{1}{2}$ 3 .

The function $f(x) = x^3 + x^2 - x + 1$ is increasing when $x < -1$ and $x > \frac{1}{2}$ 3 .

Example

Two children are making a large spherical snowball. If the volume is increasing at $0.75\ \mathrm{m}^3/\mathrm{min}$ when the radius is 0.85 m, find the rate the radius is increasing.

The volume of a sphere is $V = \frac{4}{3}\pi r^3$.

- **The rate of change of volume gives us** $\frac{dV}{dt} = 0.75 \text{ m}^3 / \text{min}$
- \bullet We are required to find $\frac{dr}{dt}$.
- **8** Reference to a sphere (with or without the formula) gives us

$$
V = \frac{4}{3}\pi r^3
$$

We write out the chain rule starting with what we require

$$
\frac{dr}{dt} = \frac{dr}{d?} x \frac{d?}{dt}
$$

where the question mark could refer to any variable. Check the information given in the question. In this case it is V for volume

$$
\frac{dr}{dt} = \frac{dr}{dV} x \frac{dV}{dt}
$$

$$
dV
$$

we have been given $\frac{dV}{dt} = 0.75$

and we work out
$$
\frac{dr}{dV}
$$
 from the formula

$$
V = \frac{4}{3}\pi r^{3}
$$

$$
\frac{dV}{dr} = 4\pi r^{2}
$$
 differentiating

when $r = 0.85$

$$
\frac{dV}{dr} = 4\pi (0.85)^2
$$
\n
$$
\frac{dr}{dV} = \frac{1}{4\pi (0.85)^2}
$$
\n
$$
\frac{dr}{dt} = \frac{dr}{dV} \times \frac{dV}{dt}
$$
\n
$$
= \frac{1}{4\pi (0.85)^2} . 0.75
$$
\n
$$
= 0.083 \text{ m/min} \qquad (2 \text{ sf})
$$
\n
$$
\frac{dr}{dt} = 8.3 \text{ cm/min}. \qquad (2 \text{ sf})
$$

Example

A ladder 3.45 m long is leaning against a wall.

The base of the ladder starts slipping at 0.45 m/s. Find the rate the top is sliding down the wall when the base is 2.15 m from the wall.

We draw a diagram of what is happening as it is easier to identify the three parts. ©

$$
\frac{dx}{dt} = 0.45
$$

We are given
$$
\frac{dx}{dt} = 0.45
$$

 \bullet We require $\frac{dh}{dt}$.

8 Using Pythagoras we have a relationship between h and x. $\frac{dx}{dt}$

could refer to any

mation given in the

V for volume
 $\frac{dx}{dt}$

Wo write out the chain rule starting with

We write out the chain rule starting with

We write out the chain rule starting with

We write out th

۰.

12[^] dt

\n13[^] dt

\n14.
$$
x^2 + h^2 = 3.45^2
$$

\n15. $h^2 = 3.45^2 - x^2$

\n16. $h^2 = 3.45^2 - x^2$

\n17. $u^2 + h^2 = 3.45^2 - x^2$

\n18. $u^2 + h^2 = 3.45^2 - x^2$

\n19. $u^2 + h^2 = 3.45^2 - x^2$

\n10. $u^2 + h^2 = 3.45^2 - x^2$

\n11. $u^2 + h^2 = 3.45^2 - x^2$

\n13. $u^2 + h^2 = 3.45^2 - x^2$

\n14. $u^2 + h^2 = 3.45^2 - x^2$

\n15. $h = 2.70$ m

We write out the chain rule starting with $\frac{dh}{dt}$

75
\n
$$
\frac{dh}{dt} = \frac{dh}{d\theta} \times \frac{d\theta}{dt}
$$
\nthe formula
\n
$$
= \frac{dh}{dx} \times \frac{dx}{dt}
$$
\nTo get $\frac{dh}{dx}$ we differentiate implicitly
\n
$$
h^2 = 3.45^2 - x^2
$$
\n
$$
2h\frac{dh}{dx} = -2x \qquad but \ x = 2.15, h = 2.7
$$
\n
$$
5.4 \frac{dh}{dx} = -4.3
$$
\n
$$
\frac{dh}{dx} = -0.7963
$$
\n
$$
\frac{dV}{dt}
$$
\nNow substitute both $\frac{dh}{dx}$ and $\frac{dx}{dt}$ in the chain rule
\n
$$
\frac{1}{0.85)^2}
$$
. 0.75
\n
$$
\frac{dh}{dt} = -0.7963 \times 0.45
$$
\n
$$
= -0.36 \text{ m/s} (2 dp)
$$
\n
$$
= -0.36 \text{ m/s} (2 dp)
$$
\ni.e.
$$
\frac{dh}{dt} = 36 \text{ cm/s down.}
$$

or

Page 38 186. $\frac{dy}{dx} = 2x \cos x - x^2 \sin x$ **187.** $\frac{dy}{dx} = 3 \tan 3x + (9x - 6) \sec^2 3x$ **188.** $\frac{dy}{dx}$ = 2x cot(5x – 1)
-5(x² – 1) cosec² (5x – 1) **189.** $\frac{dy}{dx} = 3x^2 \csc 2x$
- $2x^3 \csc 2x \cot 2x$ **190.** $h'(x) = 4\cos^2 x - 4\sin^2 x$ **191.** $f'(x) = 24 \sin x \cos^2 x$ $-12 \sin^3 x$ **192.** $h'(x) = \sec x \tan^2 x + \sec^3 x$ **193.** $k'(x) = \sin x(\sec^2 x + 1)$ **194.** $f'(x) = -24 \sin 4x \cos 4x$ **195.** $q'(x) = 3x^4 \cos x + 12x^3 \sin x$ **196.** $q'(x) = (12x^3 + 6x^2 + 4x + 1) e^{3x^2 + 2}$ **197.** $q'(x) = 6x \ln(3x-1) + \frac{9x^2}{2}$ $3x-1$ **198.** $\frac{dy}{dx} = (a + 2a^2x^2 + 2abx)e^{ax^2 + b}$ **199.** $f'(x) = ae^{ax+b} \ln(ax+b) + \frac{ae^{ax+b}}{ax+b}$ $ax + b$ **Page 41 200.** $g'(x) = \frac{6x^2 - 6x - 1}{(x - 4)^2}$ $(2x-1)^2$ **201.** $g'(x) = \frac{30x^2 - 16x - 17}{(2x^2 + 8x - 1)^2}$ **202.** $\frac{dy}{dx} = \frac{2x - 3x^2}{2\sqrt{x}(x^2 - 2x)^2}$ 203. $\frac{dy}{dx}$ = $^-(4x-5)$ $2\sqrt{x}(4x+5)^2$ **204.** $g'(x) = \frac{12x + 1 - 15x^2}{2(3x - 2)^2}$ $3x^{2/3}(3x^2-6x+1)^2$ **205.** h'(x) = $\frac{x^{1/3} + 3}{(x - 1)^3}$ $6\sqrt{x(x^{1/3}+1)^2}$ **Page 42** 206. $\frac{dy}{dx} = \frac{60x^2 + 64x + 8}{e^{3x}(5x^2 + 2x)^2}$ **207.** $q'(x) = \frac{8x^2 + 8x - 2}{e^x(4x^2 - 1)^{3/2}}$ 208. $\frac{dy}{dx}$ = $(24x^3 - 18x)e^{x^2 + 1}$ $(4x^2 - 1)^{3/2}$ **209.** $f'(x) = \frac{(2x^3 - 8x)e^{x^2}}{(x^2 - 8x)^2}$ $(x^2-3)^2$ **210.** $\frac{dy}{1}$ **211.** $\frac{dy}{1}$ **212.** $\frac{dy}{1}$ **213.** $\frac{dy}{1}$ **214.** $\frac{dy}{dx}$ $\frac{dy}{dx}$ = **Page 43 Page 44 218.** $f'(x) =$ **220.** $\frac{dy}{1}$ 222. $\frac{dy}{1}$ $\frac{dy}{dx} = -$ 223. $\frac{dy}{1}$ 227. $\frac{dy}{1}$ **229.** $\frac{dy}{1}$ $\frac{dy}{dx}$ = **230.** $k'(x) =$

Page 42 cont...
\n
$$
x-x^2 sin x
$$

\n $210. \frac{dy}{dx} = \frac{(48x^2-12x-3)e^{4x}}{(4x^2+1)^2}$
\n x
\n x

Page 45 232. $f'(x) = (10x^2 + 5)e^{x^2}$ **233.** $g'(x) = \frac{e^{2x}}{2\pi}$ $2\sqrt{x}$ $+2\sqrt{xe^{2x}}$ $g'(x) = \frac{e^{2x}(1+4x)}{2\sqrt{x}}$ **234.** $\frac{dy}{dx} = 10(2x^2 + x - 3)(4x^2 + 2x - 1)$ **235.** $g'(x) = 3e^{3x} \sin x + e^{3x} \cos x$ $g'(x) = e^{3x}(3 \sin x + \cos x)$ **236.** $h'(x) = 3e^{3x} \ln(2x) + \frac{e^{3x}}{2}$ x **237.** $j'(x) = \frac{(x^2 + 6)\sec x \tan x - 2x \sec x}{(x^2 + 6)^2}$ **238.** $k'(x) = \frac{12x^2(1+2\ln x)-8x^2}{(1-2\ln x)^2}$ $(1+2\ln x)^2$ $k'(x) = \frac{4x^2(1+6\ln x)}{(1+2\ln x)^2}$ $(1+2\ln x)^2$ 239. $\frac{dy}{dx} = \frac{2(1-x^2)\cos x + 4x\sin x}{(1-x^2)^2}$ 240. $rac{dy}{dx} = \frac{2\cos^2 x + 2\sin x + 2\sin^2 x}{\cos^2 x}$ $\frac{dy}{dx} = \frac{2}{1 - \sin x}$ or $\frac{dy}{dx}$ = 2 + 2 sec x tan x + 2 tan² x if using the product rule. **241.** $h(x)' =$ $-(\cos x + 1)$ $\sin^2 x$ **242.** $g'(x) =$ $\frac{2(2x-1)^{-1/2}e^{3x}-6e^{3x}(2x-1)^{1/2}}{2}$ $(2e^{3x})^2$ $g'(x) = \frac{(2-3x)e^{-3x}}{\sqrt{2x-1}}$ **243.** $k'(x) = 12(3x+1)^3(x-2)^{1/2}$ $\frac{6x-1}{(x^2-1)^2}$
 $\frac{16x-17}{(x^2-1)^2}$
 $\frac{16x-17}{(x^2-1)^2}$
 $\frac{dy}{dx} = -10e^{2x}(1-e^{2x})^4$
 $\frac{dy}{dx} = \frac{2}{1-\sin x}$
 $\frac{dy}{dx} = \frac{2}{1-\sin x}$
 $\frac{dy}{dx} = 2 + 2 \sec x \tan x + 2 \tan^2 x$
 $\frac{dy}{dx} = 2 + 2 \sec x \tan x + 2 \tan^2 x$

$$
+\frac{1}{2}(3x+1)^{4}(x-2)^{-1/2}
$$

$$
k'(x) = \frac{(3x+1)^{3}(27x-47)}{2(x-2)^{0.5}}
$$